Infrared laser ablation sampling coupled with data independent high resolution UPLC-IM-MS/MS for tissue analysis

Infrared laser ablation sampling coupled with data independent high resolution UPLC-IM-MS/MS for tissue analysis
M. E. Pettit, F. Donnarumma, K. K. Murray, & T. Solouki, Analytica Chimica Acta in Press, DOI: 10.1016/j.aca.2018.06.066

Infrared laser ablation sampling coupled with data independent high resolution UPLC-IM-MS/MS for tissue analysis DOI: 10.1016/j.aca.2018.06.066
Infrared laser ablation sampling coupled with data independent high resolution UPLC-IM-MS/MS for tissue analysis

Infrared laser ablation microsampling was used with data-dependent acquisition (DDA) and ion mobility-enhanced data-independent acquisition (HDMSE) for mass spectrometry based bottom-up proteomics analysis of rat brain tissue. Results from HDMSE and DDA analyses of the 12 laser ablation sampled tissue sections showed that HDMSE consistently identified approximately seven times more peptides and four times more proteins than DDA. To evaluate the impact of ultra-performance liquid chromatography (UPLC) peak congestion on HDMSE and DDA analysis, whole tissue digests from rat brain were analyzed at six different UPLC separation times. Analogous to results from laser ablated samples, HDMSE analyses of whole tissue digests yielded about four times more proteins identified than DDA for all six UPLC separation times.