Tip-Enhanced Laser Ablation Sample Transfer for Biomolecule Mass Spectrometry

Ghorai, S.; Seneviratne, C. A.; Murray, K. K. J. Am. Soc. Mass Spectrom. 2014.


Atomic force microscope (AFM) tip-enhanced laser ablation was used to transfer molecules from thin films to a suspended silver wire for off-line mass spectrometry using laser desorption ionization (LDI) and matrix-assisted laser desorption ionization (MALDI). An AFM with a 30 nm radius gold-coated silicon tip was used to image the sample and to hold the tip 15 nm from the surface for material removal using a 355 nm Nd:YAG laser. The ablated material was captured on a silver wire that was held 300 μm vertically and 100 μm horizontally from the tip. For the small molecules anthracene and rhodamine 6G, the wire was cut and affixed to a metal target using double-sided conductive tape and analyzed by LDI using a commercial laser desorption time-of-flight mass spectrometer. Approximately 100 fg of material was ablated from each of the 1 μm ablation spots and transferred with approximately 3% efficiency. For larger polypeptide molecules angiotensin II and bovine insulin, the captured material was dissolved in saturated matrix solution and deposited on a target for MALDI analysis.

GUMBOS matrices of variable hydrophobicity for matrix-assisted laser desorption/ionization mass spectrometry

Al Ghafly, Siraj, Das, Regmi, Magut, Galpothdeniya, Murray, Warner, Rapid Commun. Mass Spectrom. 2014, 28, 2307; DOI: 10.1002/rcm.7027.


Detection of hydrophobic peptides remains a major obstacle for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). This stems from the fact that most matrices for MALDI are hydrophilic and therefore have low affinities for hydrophobic peptides. Herein, 1-aminopyrene (AP) and AP-derived group of uniform materials based on organic salts (GUMBOS) as novel matrices for MALDI-MS analyses of peptides were investigated for hydrophobic and hydrophilic peptides.


A number of solid-phase AP-based GUMBOS are synthesized with variable hydrophobicity simply by changing the counterions. Structures were confirmed by use of 1H NMR and electrospray ionization mass spectrometry (ESI-MS). 1-Octanol/water partition coefficients (Ko/w) were used to measure the hydrophobicity of the matrices. A dried-droplet method was used for sample preparation. All spectra were obtained using a MALDI-TOF mass spectrometer in positive ion reflectron mode.


A series of AP-based GUMBOS was synthesized including [AP][chloride] ([AP][Cl]), [AP][ascorbate] ([AP][Asc]) and [AP][bis(trifluoromethane)sulfonimide] ([AP][NTf2]). The relative hydrophobicities of these compounds and α-cyano-4-hydroxycinnamic acid (CHCA, a common MALDI matrix) indicated that AP-based GUMBOS can be tuned to be much more hydrophobic than CHCA. A clear trend is observed between the signal intensities of hydrophobic peptides and hydrophobicity of the matrix.


MALDI matrices of GUMBOS with tunable hydrophobicities are easily obtained simply by varying the counterion. We have found that hydrophobic matrix materials are very effective for MALDI determination of hydrophobic peptides and, similarly, the more hydrophilic peptides displayed greater intensity in the more hydrophilic matrix.

Isolation and determination of the primary structure of a lectin protein from the serum of the american alligator (Alligator Mississippiensis)

Darville, Merchant, Maccha, Siddavarapu, Hasan, and Murray
Comp. Biochem Physiol. B

Alligator Lectin Protein Sequence (doi:10.1016/j.cbpb.2011.11.001)

Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35 kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35 kDa protein was ~ 98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates.

Particle Formation in Ambient MALDI Plumes

Musapelo and Murray
Anal. Chem. 2011, 83, 6601–6608

The ablated particle count and size distribution of four solid matrix materials commonly used for matrix-assisted laser desorption ionization (MALDI) were measured with a scanning mobility particle sizer (SMPS) combined with a light scattering aerodynamic particle sizer (APS). The two particle sizing instruments allowed size measurements in the range from 10 nm to 20 μm. The four solid matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), 4-nitroaniline (NA), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapic acid (SA). A thin film of the matrix was deposited on a stainless steel target using the dried droplet method and was irradiated with a 337 nm nitrogen laser at atmospheric pressure. The target was rotated during the measurement. A large number of nanoparticles were produced, and average particle diameters ranged from 40 to 170 nm depending on the matrix and the laser fluence. These particles are attributed to agglomeration of smaller particles and clusters and/or hydrodynamic sputtering of melted matrix. A coarse particle component of the distribution was observed with diameters between 500 nm and 2 μm. The coarse particles were significantly lower in number but had a total mass that was comparable to that of the nanoparticles. The coarse particles are attributed to matrix melting and spallation. Two of the compounds, CHCA and SA, had a third particle size distribution component in the range of 10 to 30 nm, which is attributed to the direct ejection of clusters.