LSU Publications

[131] C. Dong, F. Donnarumma, K.K. Murray, Infrared Laser Ablation Microsampling for Small Volume Proteomics, J. Am. Soc. Mass. Spectrom., 33 1003-1010 (2022).

[130] Dong, C., Richardson, L.T., Solouki, T., Murray, K.K.: Infrared Laser Ablation Microsampling with a Reflective Objective. J. Am. Soc. Mass. Spectrom. 33, 463-470 (2022)

[129] R.O. Lawal, L.T. Richardson, C. Dong, F. Donnarumma, T. Solouki, K.K. Murray, Deep-ultraviolet laser ablation sampling for proteomic analysis of tissue, Anal. Chim. Acta, 1184 (2021).

[128] A.C. Pulukkody, Y.P. Yung, F. Donnarumma, K.K. Murray, R.P. Carlson, L. Hanley, Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer, PLoS One, 16 (2021) e0250911.

[127] K.K. Murray, Lasers for matrix-assisted laser desorption ionization, J. Mass Spectrom., 56 (2021) e4664.

[126] K.K. Murray, In defense of the quasimolecular ion, J. Mass Spectrom., 56 (2021) e4700.

[125] N. Mehta, S. Shaik, A. Prasad, A. Chaichi, S.P. Sahu, S.M.A. Hasan, F. Donnarumma, K.K. Murray, R. Devireddy, M.R. Gartia, Multimodal Label-free Monitoring of Adipogenic Stem Cell Differentiation using Endogenous Optical Biomarkers, Adv. Funct. Mater., (2021) 2103955.

[124] V.A. Ricigliano, C. Dong, L.T. Richardson, F. Donnarumma, S.T. Williams, T. Solouki, K.K. Murray, Honey Bee Proteome Responses to Plant and Cyanobacteria (blue-green algae) Diets, ACS Food Science & Technology, 1 (2021) 17-26.

[123] A. Chaichi, S.M.A. Hasan, N. Mehta, F. Donnarumma, P. Ebenezer, K.K. Murray, J. Francis, M.R. Gartia, Label-free lipidome study of paraventricular thalamic nucleus (PVT) of rat brain with post-traumatic stress injury by Raman imaging, Analyst, 146 (2021) 170-183.

[122] K. Wang, F. Donnarumma, M.E. Pettit, C.W. Szot, T. Solouki, K.K. Murray, MALDI imaging directed laser ablation tissue microsampling for data independent acquisition proteomics, J. Mass Spectrom., 55 (2020) e4475.

[121] F. Cao, F. Donnarumma, K.K. Murray, Wavelength-Dependent Tip-Enhanced Laser Ablation of Organic Dyes, J. Phys. Chem. C, 124 (2020) 1918-1922.

[120] B. Banstola, K.K. Murray, Sublimation Electrification of Organic Compounds, J. Am. Soc. Mass. Spectrom., 31 (2020) 888-893.

[119] B. Banstola, C.W. Szot, A.P. Deenamulla Kankanamalage, K.K. Murray, Piezoelectric matrix-assisted ionization, Eur J Mass Spectrom, 25 (2019) 202-207.

[118] R.O. Lawal, F. Donnarumma, K.K. Murray, Electrospray Photochemical Oxidation of Proteins, J. Am. Soc. Mass Spectrom. 18 (2019) 439–4. doi:10.1007/s13361-019-02313-4.

[117] K. Wang, F. Donnarumma, S.W. Herke, C. Dong, P.F. Herke, K.K. Murray, RNA sampling from tissue sections using infrared laser ablation, Anal. Chim. Acta. 1063 (2019) 91–98. doi:10.1016/j.aca.2019.02.054.

Tip-enhanced laser ablation and capture of DNA

[116] F. Cao, F. Donnarumma, K.K. Murray, Tip-enhanced laser ablation and capture of DNA, Appl. Surf. Sci. 476 (2019) 658–662. doi:10.1016/j.apsusc.2019.01.104.

[115] B. Banstola, K.K. Murray, A nanoparticle co‐matrix for multiple charging in matrix‐assisted laser desorption ionization imaging of tissue, Rapid Commun. Mass Spectrom. 16 (2019) 12. doi:10.1002/rcm.8424.

MALDI image of fungicide in apple

[114] I. Pereira, B. Banstola, K. Wang, F. Donnarumma, B.G. Vaz, K.K. Murray, Matrix-Assisted Laser Desorption Ionization Imaging and Laser Ablation Sampling for Analysis of Fungicide Distribution in Apples, Anal. Chem. 91 (2019) 6051–6056. doi:10.1021/acs.analchem.9b00566.

[113] B. Banstola, C.W. Szot, A.P. Deenamulla Kankanamalage, K.K. Murray, Piezoelectric matrix-assisted ionization, Eur J Mass Spectrom. 25 (2019) 202–207. doi:10.1177/1469066718816696.

Myoglobin ionized by (a) 193 nm laser ablation electrospray and (b) electrospray

[112] R.O. Lawal, F. Donnarumma, K.K. Murray, Deep-ultraviolet laser ablation electrospray ionization mass spectrometry, J. Mass Spectrom. 54 (2019) 281–287. doi:10.1002/jms.4338.

[111] M.E. Pettit, F. Donnarumma, K.K. Murray, T. Solouki, Infrared laser ablation sampling coupled with data independent high resolution UPLC-IM-MS/MS for tissue analysis, Anal. Chim. Acta. 1034 (2018) 102–109. doi:10.1016/j.aca.2018.06.066.

[110] K. Wang, F. Donnarumma, M.D. Baldone, K.K. Murray, Infrared laser ablation and capture of enzymes with conserved activity, Anal. Chim. Acta. 1027 (2018) 41–46. doi:10.1016/j.aca.2018.04.058.

Tip-enhanced laser ablation crater in anthracene

[109] F. Cao, F. Donnarumma, K.K. Murray, Wavelength dependent atomic force microscope tip-enhanced laser ablation, Appl. Surf. Sci. 447 (2018) 437–441. doi:10.1016/j.apsusc.2018.03.239.

[108] M.E. Pettit, M.R. Brantley, F. Donnarumma, K.K. Murray, T. Solouki, Broadband ion mobility deconvolution for rapid analysis of complex mixtures, Analyst. 143 (2018) 2574–2586. doi:10.1039/c8an00193f.

[107] K.K. Murray, Comment on: β€œNominal Mass?” by Athula B. Attygalle and Julius Pavlov, J. Am. Soc. Mass Spectrom. 28, 1737-1738 (2017), J. Am. Soc. Mass Spectrom. 28 (2017) 1737–2. doi:10.1007/s13361-017-1801-1.

Fingermark ablation

[106] F. Donnarumma, E.E. Camp, F. Cao, K.K. Murray, Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling, J. Am. Soc. Mass Spectrom. 28 (2017) 1958–1964. doi:10.1007/s13361-017-1703-2.

[105] K. Wang, F. Donnarumma, S.W. Herke, P.F. Herke, K.K. Murray, Infrared laser ablation sample transfer of tissue DNA for genomic analysis, Anal. Bioanal. Chem. 409 (2017) 4119–4126. doi:10.1007/s00216-017-0373-z.

[104] B. Banstola, K.K. Murray, Pulsed valve matrix-assisted ionization, Analyst. 142 (2017) 1672–1675. doi:10.1039/c7an00489c.

Systematic assessment of surfactants

[103] B. Banstola, E.T. Grodner, F. Cao, F. Donnarumma, K.K. Murray, Systematic assessment of surfactants for matrix-assisted laser desorption/ionization mass spectrometry imaging, Anal. Chim. Acta. 963 (2017) 76–82. doi:10.1016/j.aca.2017.01.054.

[102] K.K. Murray, C.A. Seneviratne, S. Ghorai, High resolution laser mass spectrometry bioimaging, Methods. 104 (2016) 118–126. doi:10.1016/j.ymeth.2016.03.002.

Laser Ablation Sample Transfer for Localized LC-MS/MS Proteomic Analysis of Tissue

[101] F. Donnarumma, K.K. Murray, Laser ablation sample transfer for localized LC-MS/MS proteomic analysis of tissue, J. Mass Spectrom. 51 (2016) 261–268. doi:10.1002/jms.3744.

[100] C.A. Seneviratne, S. Ghorai, K.K. Murray, Laser desorption sample transfer for gas chromatography/mass spectrometry, Rapid Commun. Mass Spectrom. 30 (2016) 89–94. doi:10.1002/rcm.7419.

[99] F. Donnarumma, F. Cao, K.K. Murray, Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue, J. Am. Soc. Mass Spectrom. 27 (2016) 108–116. doi:10.1007/s13361-015-1249-0.

Cao Analyst 2016
F. Cao, F. Donnarumma, K.K. Murray, Particle size measurement from infrared laser ablation of tissue, Analyst. 141 (2016) 183–190. doi:10.1039/C5AN01765C.

[98] F. Cao, F. Donnarumma, K.K. Murray, Particle size measurement from infrared laser ablation of tissue, Analyst. 141 (2016) 183–190. doi:10.1039/C5AN01765C.

[97] K.K. Murray, S. Ghorai, C.A. Seneviratne, Tip Enhanced Laser Ablation Sample Transfer for Mass Spectrometry, MRS Proc. 1754 (2015) mrsf14–1754–pp08–04. doi:10.1557/opl.2015.286.

[96] K.K. Murray, The term β€œmultiple reaction monitoring” is recommended, Rapid Commun. Mass Spectrom. 29 (2015) 1926–1928. doi:10.1002/rcm.7297.

AFM image of ablation crater of an insulin thin film and MALDI mass spectrum of the collected material

[95] S. Ghorai, C.A. Seneviratne, K.K. Murray, Tip-enhanced laser ablation sample transfer for biomolecule mass spectrometry, J. Am. Soc. Mass Spectrom. 26 (2015) 63–70. doi:10.1007/s13361-014-1005-x.

[94] H. Al Ghafly, N. Siraj, S. Das, B.P. Regmi, P.K.S. Magut, W.I.S. Galpothdeniya, K.K. Murray, I. M. Warner, GUMBOS matrices of variable hydrophobicity for matrix-assisted laser desorption/ionization mass spectrometry, 28 (2014) 2307–2314. doi:10.1002/rcm.7027.

[93] J.M. Hayes, K.K. Murray, Ambient laser ablation sample transfer with nanostructure-assisted laser desorption ionization mass spectrometry for bacteria analysis, Rapid Commun. Mass Spectrom. 28 (2014) 2382–2384. doi:10.1002/rcm.7023.

Journal of Mass Spectrometry, July 2014: " Particle formation by infrared laser ablation of MALDI matrix compounds"

[92] T. Musapelo, K.K. Murray, Particle formation by infrared laser ablation of MALDI matrix compounds, J. Mass Spectrom. 49 (2014) 543–549. doi:10.1002/jms.3378.

[91] B.P. Regmi, N.C. Speller, M.J. Anderson, J.O. Brutus, Y. Merid, S. Das, B. El-Zahab, D. J. Hayes, K. K. Murray, I. M. Warner, Molecular weight sensing properties of ionic liquid-polymer composite films: theory and experiment, J. Mat. Chem. C, 2 (2014) 4867–4878. doi:10.1039/C3TC32528H.

[90] V. Salla, K.K. Murray, Matrix-assisted laser desorption ionization mass spectrometry for identification of shrimp, Anal. Chim. Acta. 794 (2013) 55–59. doi:10.1016/j.aca.2013.07.014.

[89] S.-G. Park, K.K. Murray, Ambient laser ablation sampling for capillary electrophoresis mass spectrometry, Rapid Commun. Mass Spectrom. 27 (2013) 1673–1680. doi:10.1002/rcm.6618.

Modified mousetrap used to create shock-generated particles from thin film deposits
[88] T. Musapelo, K.K. Murray, Size distributions of ambient shock-generated particles: implications for inlet ionization, Rapid Commun. Mass Spectrom. 27 (2013) 1283–1286. doi:10.1002/rcm.6568.

[87] T. Musapelo, K.K. Murray, Particle production in reflection and transmission mode laser ablation: implications for laserspray ionization, J. Am. Soc. Mass Spectrom. 24 (2013) 1108–1115. doi:10.1007/s13361-013-0631-z.

Pure and Applied Chemistry Cover July 2013
[86] K.K. Murray, R.K. Boyd, M.N. Eberlin, G.J. Langley, L. Li, Y. Naito, Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013), Pure. Appl. Chem. 85 (2013) 1515–1609. doi:10.1351/PAC-REC-06-04-06.

[85] S.-G. Park, K.K. Murray, Infrared laser ablation sample transfer for on-line liquid chromatography electrospray ionization mass spectrometry, J. Mass Spectrom. 47 (2012) 1322–1326. doi:10.1002/jms.3096.

Huang, Murray, Finite element simulation of infrared laser ablation for mass spectrometry, 26 (2012) 2145.

[84] F. Huang, K.K. Murray, Finite element simulation of infrared laser ablation for mass spectrometry, Rapid Commun. Mass Spectrom. 26 (2012) 2145–2150. doi:10.1002/rcm.6331.

[83] L.N.F. Darville, M.E. Merchant, V. Maccha, V.R. Siddavarapu, A. Hasan, K.K. Murray, Isolation and determination of the primary structure of a lectin protein from the serum of the American alligator (Alligator mississippiensis), Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 161 (2012) 161–169. doi:10.1016/j.cbpb.2011.11.001.

LSU spelled with the peptide bradykinin transferred by IR laser ablation

[82] S.-G. Park, K.K. Murray, Infrared laser ablation sample transfer for MALDI imaging, Anal. Chem. 84 (2012) 3240–3245. doi:10.1021/ac3006704.

[81] T. Musapelo, K.K. Murray, Particle Formation in Ambient MALDI Plumes, Anal. Chem. 83 (2011) 6601–6608. doi:10.1021/ac201032g.

Top-view of droplet suspended above laser alblation target

[80] S.-G. Park, K.K. Murray, Infrared laser ablation sample transfer for MALDI and electrospray, J. Am. Soc. Mass Spectrom. 22 (2011) 1352–1362. doi:10.1007/s13361-011-0163-3.

[79] J.M. Hayes, L.C. Anderson, J.A. Schultz, M.V. Ugarov, T.F. Egan, E.K. Lewis, V. Womack, A. S. Woods, S. N. Jackson, R. H. Hauge, K. Kittrell, S. Ripley, K. K. Murray, Matrix Assisted Laser Desorption Ionization Ion Mobility Time-of-Flight Mass Spectrometry of Bacteria, American Chemical Society, Washington, DC, 2011. doi:10.1021/bk-2011-1065.ch009.

[78] J. Lee, S.A. Soper, K.K. Murray, A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 25 (2011) 693–699. doi:10.1002/rcm.4921.

[77] H. Xia, K.K. Murray, S. Soper, J. Feng, Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment, Biomed. Microdevices. 14 (2012) 67–81.

Murray Group graduate student Lancia Darville and Prof. Mark Merchant of McNeese State University
[76] L.N.F. Darville, M.E. Merchant, A. Hasan, K.K. Murray, Proteome analysis of the leukocytes from the American alligator (Alligator mississippiensis) using mass spectrometry, Comp. Biochem. Physiol. Part D Genomics Proteomics. 5 (2010) 308–316. doi:10.1016/j.cbd.2010.09.001.

[75] F. Huang, K.K. Murray, Continuous flow infrared matrix-assisted laser desorption electrospray ionization mass spectrometry, Rapid Commun. Mass Spectrom. 24 (2010) 2799–2804. doi:10.1002/rcm.4704.

[74] K.K. Murray, Glossary of terms for separations coupled to mass spectrometry, J. Chromatogr. A. 1217 (2010) 3922–3928. doi:10.1016/j.chroma.2010.03.013.

[73] A.S. Galhena, G.A. Harris, L. Nyadong, K.K. Murray, F.M. Fernandez, Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization, Anal. Chem. 82 (2010) 2178–2181. doi:10.1021/ac902905v.

Mid-infrared laser ablation of glycerol
Mid-infrared laser ablation of glycerol

[72] X. Fan, K.K. Murray, Wavelength and time-resolved imaging of material ejection in infrared matrix-assisted laser desorption, J. Phys. Chem. A. 114 (2010) 1492–1497. doi:10.1021/jp9077163.

[71] J. Lee, S.A. Soper, K.K. Murray, Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS, Analyst. 134 (2009) 2426–2433. doi:10.1039/b916556h.

Microfluidic chips for mass spectrometry-based proteomics. J Mass Spectrom, 44, 579 (2009)

[70] J. Lee, S.A. Soper, K.K. Murray, Microfluidic chips for mass spectrometry-based proteomics, J. Mass Spectrom. 44 (2009) 579–593. doi:10.1002/jms.1585.

[69] J.S. Sampson, K.K. Murray, D.C. Muddiman, Intact and Top-Down Characterization of Biomolecules and Direct Analysis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Coupled to FT-ICR Mass Spectrometry, J. Am. Soc. Mass Spectrom., 20 (2009) 667–673. doi:10.1016/j.jasms.2008.12.003.

[68] X. Fan, K.K. Murray, UV laser irradiation of IR laser generated particles ablated from nitrobenzyl alcohol, Appl. Surf. Sci. 255 (2009) 6297–6302. doi:10.1016/j.apsusc.2009.02.005.

[67] J. Lee, S. Soper, K.K. Murray, Microfluidics with MALDI analysis for proteomicsβ€”A review, Anal. Chim. Acta. 649 (2009) 180–190.

[66] J.-K. Kim, K.K. Murray, Matrix-assisted laser desorption/ionization with untreated silicon targets, Rapid. Commun. Mass Spectrom. 23 (2009) 203–205. doi:10.1002/rcm.v23:1.

Surface plot of fluence dependence of particle concentration for ablation of glycerol
Surface plot of fluence dependence of particle concentration for ablation of glycerol at wavelengths from 2.60 to 3.80 ΞΌm.

[65] X. Fan, M.W. Little, K.K. Murray, Infrared laser wavelength dependence of particles ablated from glycerol, Appl. Surf. Sci. 255 (2008) 1699–1704. doi:10.1016/j.apsusc.2008.06.033.

[64] A.J. Dugas, K.K. Murray, On-target digestion of collected bacteria for MALDI mass spectrometry, Anal. Chim. Acta. 627 (2008) 154–161. doi:10.1016/j.aca.2008.07.028.

Side View of Target for IR Laser + Electrospray

[63] Y.H. Rezenom, J. Dong, K.K. Murray, Infrared laser-assisted desorption electrospray ionization mass spectrometry, Analyst. 133 (2008) 226–232. doi:10.1039/b715146b.

[62] H. Musyimi, S.A. Soper, K.K. Murray, On-line versus off-line analysis from a microfluidic device, in: S. Le Gac (Ed.), Miniaturization and Mass Spectrometry, Royal Society of Chemistry, 2008.

[61] F. Huang, X. Fan, K.K. Murray, Matrix-assisted laser desorption ionization of infrared laser ablated particles, Int. J. Mass Spectrom. 274 (2008) 21–24. doi:10.1016/j.ijms.2008.04.006.

[60] J. Lee, H. Musyimi, S. Soper, K.K. Murray, Development of an Automated Digestion and Droplet Deposition Microfluidic Chip for MALDI-TOF MS, J. Am. Soc. Mass Spectrom. 19 (2008) 964–972. doi:10.1016/j.jasms.2008.03.015.

[59] K.K. Murray, Mass spectrometry and Web 2.0, J. Mass Spectrom. 42 (2007) 1263–1271. doi:doi:10.1002/jms.1315.

[58] M.W. Little, J. Laboy, K.K. Murray, Wavelength dependence of soft infrared laser desorption and ionization, J. Phys. Chem. C. 111 (2007) 1412–1416. doi:10.1021/jp063154v.

[57] M.W. Little, K.K. Murray, Two-Laser Mid-Infrared and Ultraviolet Matrix-Assisted Laser Desorption/Ionization, Int. J. Mass Spectrom. 261 (2007) 140–145. doi:10.1016/j.ijms.2006.08.010.

[56] J. Dong, Y.H. Rezenom, K.K. Murray, Desorption electrospray ionization of aerosol particles, Rapid Commun. Mass Spectrom, 21 (2007) 3995–4000. doi:10.1002/rcm.3294.

[55] A.S. Woods, M.V. Ugarov, S.N. Jackson, T. Egan, H.-Y.J. Wang, K.K. Murray, and J. A. Schultz, IR-MALDI-LDI combined with ion mobility orthogonal time-of-flight mass spectrometry, J. Proteome Res. 5 (2006) 1484–1487. doi:10.1021/pr060055l.

[54] S.N. Jackson, J.-K. Kim, J.L. Laboy, K.K. Murray, Particle formation by infrared laser ablation of glycerol: implications for ion formation, Rapid Commun. Mass Spectrom. 20 (2006) 1299–1304. doi:10.1002/rcm.2443.

Capillary gel microfluidic chip interfaced to laser desorption/ionization (LDI) mass spectrometry with a time-of-flight mass analyzer.

[53] Y. Xu, M.W. Little, K.K. Murray, Interfacing capillary gel microfluidic chips with infrared laser desorption mass spectrometry, J. Am. Soc. Mass Spectrom. 17 (2006) 469–474. doi:10.1016/j.jasms.2005.12.003.

[52] K. K. Murray. Infrared MALDI, in Encyclopedia of Mass Spectrometry, vol. VI, (Eds: R. M. Caprioli, M. L. Gross), Elsevier, Amsterdam, 2006.

[51] H. Musyimi, J. Guy, D.A. Narcisse, S.A. Soper, K.K. Murray, Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet, Electrophoresis. 26 (2005) 4703–4710. doi:10.1002/elps.200500317.

[50] J.-K. Kim, S.N. Jackson, K.K. Murray, Matrix-assisted laser desorption/ionization mass spectrometry of collected bioaerosol particles, Rapid Commun. Mass Spectrom. 19 (2005) 1725–1729. doi:10.1002/rcm.1982.

Rotating ball inlet with capillary electrophoresis microfluidic chip.

[49] H. Musyimi, D.A. Narcisse, X. Zhang, W. Stryjewski, S.A. Soper, K.K. Murray, Online CE-MALDI-TOF MS using a rotating ball interface, Anal. Chem. 76 (2004) 5968–5973. doi:10.1021/ac0489723.

[48] X. Zhang, D.A. Narcisse, K.K. Murray, On-line single droplet deposition for MALDI mass spectrometry, J. Am. Soc. Mass Spectrom. 15 (2004) 1471–1477. doi:10.1016/j.jasms.2004.06.016.

[47] Y. Xu, M.W. Little, D.J. Rousell, J.L. Laboy, K.K. Murray, Direct from polyacrylamide gel infrared laser desorption/ionization, Anal. Chem. 76 (2004) 1078–1082. doi:10.1021/ac034879n.

[46] S.N. Jackson, S. Mishra, K.K. Murray, On-line laser desorption/ionization mass spectrometry of matrix-coated aerosols, Rapid Commun. Mass Spectrom. 18 (2004) 2041–2045. doi:10.1002/rcm.1590.

Omniflex IR

[45] D. Rousell, S.M. Dutta, M.W. Little, K.K. Murray, Matrix-free infrared soft laser desorption/ionization, J. Mass Spectrom. 39 (2004) 1182–1189. doi:10.1002/jms.706.

[44] J.L. Laboy, K.K. Murray, Characterization of infrared matrix-assisted laser desorption ionization samples by Fourier transform infrared attenuated total reflection spectroscopy, Appl. Spectrosc. 58 (2004) 451–456. doi:10.1366/000370204773580301.

IR-MALDI mass spectra of benzo[a]pyrene with a nitrocellulose matrix

[43] S.N. Jackson, S.M. Dutta, K.K. Murray, A nitrocellulose matrix for infrared matrix-assisted laser desorption/ionization of polycyclic aromatic hydrocarbons, Rapid Commun. Mass Spectrom. 18 (2004) 228–230. doi:10.1002/rcm.1296.

[42] S.N. Jackson, S. Mishra, K.K. Murray, Characterization of Coarse Particles Formed by Laser Ablation of MALDI Matrixes, J. Phys. Chem. B. 107 (2003) 13106–13110. doi:10.1021/jp030600v.

[41] M.W. Little, J.-K. Kim, K.K. Murray, Two-laser infrared and ultraviolet matrix-assisted laser desorption/ionization, J. Mass Spectrom. 38 (2003) 772–777. doi:10.1002/jms.494.

[40] S.H. Bhattacharya, T.J. Raiford, K.K. Murray, Infrared laser desorption/ionization on silicon, Anal. Chem. 74 (2002) 2228–2231. doi:10.1021/ac0112972.

[39] S.N. Jackson, K.K. Murray, Matrix addition by condensation for matrix-assisted laser desorption/ionization of collected aerosol particles, Anal. Chem. 74 (2002) 4841–4844. doi:10.1021/ac020181i.

New Account on Mastodon

I set up an account on a Mastodon instance: mastodon.online/@kkmurray

Good hash tags seem to be #massspec and #teammassspec

Job Opening in the LSU Mass Spectrometry Facility

LSUAM Science - Department of Chemistry - Associate - Research 5

The Louisiana State University Department of Chemistry is offering a position as Research Associate in the Mass Spectrometry Facility (MSF), which is located on the LSU main campus in Baton Rouge. The MSF is a core facility that serves all researchers and student of the LSU system as well as partners in the academia and the private sector both in Louisiana as well as in other states. The MSF is staffed by two research associates, and further staffed with graduate and undergraduate students that perform duties in the core facilities as instrument assistants. The facility maintains 5 mass spectrometers: An Agilent 6230 ESI TOF, an Agilent 5977 GC-MS, a Bruker MALDI UltrafleXtreme, a Bruker amaZon Ion Trap and Thermo Scientific Q-Exactive. The facility is equipped to perform most sample preparation techniques in many β€œ-omics” fields as well as in organic chemistry and polymer science. The position will focus on operation of the ESI TOF and GC-MS instruments, and the RA5 will be trained in operation of the additional mass spectrometers present in the facility and the associated equipment. The RA5 will receive training in various sample preparation techniques. The candidate will report to the facility senior personnel, and will communicate directly with users about their projects, samples, and data analysis.

Job Opening for Assistant Professor Analytical Chemistry at LSU

LSUAM Science - Department of Chemistry - Assistant Professor

The Department of Chemistry, housed within LSU’s College of Science, seeks a tenure-track faculty member in analytical chemistry for an August 2023 start date. Candidates are required to have strong experience in analytical chemistry, broadly defined. The successful candidate will join a dynamic research environment and will have multiple opportunities to collaborate within the Chemistry Department (see research themes below) and across the Louisiana State University System. Inclusiveness and diversity are critical to the success of the Department, the College of Science, and the University. The selected candidate will be expected to foster an environment that is supportive and welcoming of all groups.

LSU Professor Receives Over $1M in Federal Grants to Expand Mass Spectrometry Facility

https://www.lsu.edu/science/chemistry/news/2022/august/msf-funding.php

Bruker Rapiflex Mass Spectrometer Funded by NSF MRI

MRI: Acquisition of a MALDI Tandem Mass Spectrometer (MALDI MS/MS) for Imaging, Biological Research and Chemical Materials Characterization

CHE-2215823

This award is jointly funded by the Major Research Instrumentation Program, the Chemistry Research Instrumentation Program, and the Established Program to Stimulate Competitive Research (EPSCoR). Professor Kermit Murray from Louisiana State University, on behalf of from 11 investigators in 4 departments across the university, is acquiring a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF-MS) equipped with a photodiode array. In general, mass spectrometry (MS) is one of the key analytical methods used to identify and characterize small quantities of chemical species in complex samples. MALDI TOF combines gentle ionization (ideal for producing intact ions of peptides, proteins, nucleic acids, carbohydrates, synthetic polymers, and other similarly sized species) with a detection mode that offers an excellent balance between sensitivity and accuracy across a wide range of samples. The acquisition strengthens the research infrastructure at the university and within the regional. The instrument broadens participation by giving hands-on access to a diverse student population. The instrument is also used in outreach activities.

The award is aimed at enhancing research and education at all levels. It especially impacts studies correlating molecular structure, orientation and dynamics. Researchers use the MALDI-TOF-MS to study a number of exciting projects. Research will be enabled that is aimed at the development of a comprehensive approach to mass spectrometry imaging that is quantitative and capable of biomolecule identification. MALDI imaging is combined with IR and UV laser ablation sample transfer for liquid chromatography tandem mass spectrometry analysis. In addition, novel approaches to further improve the MALDI technology will be developed. Two new platforms are developed that improve biological imaging. Researchers are investigating the effect of coronal charge patterning on the equilibrium aggregate structure of amphiphilic ionic block copolymers. The impact of structural precision in the properties and functions of discrete linear and branched synthetic polymers are being studied. MALDI is being used to validate recently developed high-resolution and high- speed Raman micro-spectroscopy method to detect lipid modulation and image spatial distribution of lipids in vitro and ex vivo brain tissues. The instrument enables the elucidation of the underlying chemistry of homogeneous lignin depolymerization using a contactless gas phase reactor and upgrade fast pyrolysis of lignin toward formation of biofuel. The instrument is aiding the design, synthesis and study of the photophysical properties and potential applications of new fluorophores that absorb and emit in the visible and near-infrared region of the optical spectrum (400–900 nm). Among the current fluorophores under investigation, boron dipyrromethene (BODIPY) dyes display a rich array of photophysical and optoelectronic properties. Fundamental knowledge will be gained on alkyne metathesis reactions and the creation of design rules toward catalysts with higher activity and broader substrate scope. This includes the design and synthesis of new catalyst and ligand systems and analysis of their reactivities both experimentally and computationally. Additional studies enabled are the developmental competence of in vitro matured oocytes for use in assisted reproductive technologies (ART), the synthesis and application of a specific class of ionic liquid (IL) compounds termed, β€œgroup of uniform materials based on organic salts” (GUMBOS), which are used as MALDI matrixes for imaging applications, and uncovering the rules governing changes in electron transfer after encapsulation of redox active molecules in confined spaces. Researchers are studying molecular catalysts containing metal-ligand multiple bonds that are driven by renewable energy for fuel production and industrial applications.

Waters Synapt Instrument Funded by NIH

The proposal “Waters Synapt XS Mass Spectrometer for Louisiana State University” 1S10OD030429-01A1 with PI Kermit Murray has been funded by the National Institutes of Health for $599,999.

This proposal requests funding for a Waters Synapt XS mass spectrometer that will support biomedical research at Louisiana State University. The instrument will be placed in the LSU Department of Chemistry Mass Spectrometry Facility which is currently the only user facility on the LSU campus where mass spectrometry-based metabolomics and other analysis to support NIH investigators. The acquisition of the proposed instrument will allow researchers at LSU to conduct metabolomics experiments for which they are currently dependent on outside facilities. This will allow NIH-funded PIs to conduct a larger portion of their experiments directly at LSU, which allows for overall more efficient research. Acquisition of a metabolomics-oriented mass spectrometer will complement the current portfolio of mass spectrometry instrumentation and provide a comprehensive platform for basic and translational research that is at the center of the biomedical research mission of the university. Acquisition of the Waters Synapt XS mass spectrometer will provide a resource that is currently available to LSU biomedical researchers and enable them to expand the scope and efficiency of their work.

Acquisition of the Waters Synapt XS mass spectrometer will support the research of a diverse group of biomedical researchers Louisiana State University in the College of Science, Agricultural Center, and the School of Veterinary Medicine and adds to the NIH support for the State of Louisiana. The instrument will support research aimed biomedical research across the Baton Rouge LSU campus and will allow researchers from multiple units to conduct metabolomics experiments for which they currently dependent on outside facilities.

United States patent 11,371,913 Methods And Devices for Sample Capture Using Gas-Pulse Nanoparticle Displacement

Abstract

Murray Kermit, K., Donnarumma, F., & Stephenson, J. (2022). US Patent No. US 11371913 B2.

The present disclosure provides for sampling instruments and methods of collecting sample particles. The sampling instrument can include a high-pressure pulsed valve coupled to a gas flow system to displace a sample from a surface. Also included can be a voltage supply coupled to a voltage switch, a suction device, a sample collector, and a collection filter. To collect a sample, extractive particles can be deposited onto a sample present on a substrate. At least a portion of the sample becomes coupled to a portion of the extractive particles to form sample particles. High-pressure gas can be discharged at the sample, thereby aerosolizing a portion of the sample particles to disperse aerosolized sample particles. A portion of the aerosolized sample particles can be collected onto a collection filter to form a collected sample.

ASMS 2022: MALDI Imaging Using GUMBOS and NanoGUMBOS Matrices

ThP 318

ASMS 2022: Laser Ablation and Capture for Native Spectrometry

TP 457

Laser Ablation and Capture for Native Spectrometry
TP 457 Laser Ablation and Capture for Native Spectrometry