Infrared laser ablation and capture of enzymes with conserved activity

Wang, K., Donnarumma, F., Baldone, M. D., & Murray, K. K. Infrared laser ablation and capture of enzymes with conserved activity. Anal Chim Acta, 1027, 41–46 (2018).

Graphical abstract: Infrared laser ablation and capture of enzymes with conserved activity
Graphical abstract: Infrared laser ablation and capture of enzymes with conserved activity

Abstract

Infrared (IR) laser ablation at 3 μm wavelength was used to extract enzymes from tissue and quantitatively determine their activity. Experiments were conducted with trypsin, which was ablated, captured and then used to digest bovine serum albumin (BSA). BSA digests were evaluated using matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) and sequence coverage of 59% was achieved. Quantification was performed using trypsin and catalase standards and rat brain tissue by fluorescence spectroscopy. Both enzymes were reproducibly transferred with an efficiency of 75 ± 8% at laser fluences between 10 and 30 kJ/m2. Trypsin retained 37 ± 2% of its activity and catalase retained 50 ± 7%. The activity of catalase from tissue was tested using three consecutive 50 μm thick rat brain sections. Two 4 mm2 regions were ablated and captured from the cortex and cerebellum regions. The absolute catalase concentration in the two regions was consistent with previously published data, demonstrating transfer of intact enzymes from tissue.

Pulsed Valve Matrix-assisted Ionization

DOI: 10.1039/C7AN00489C

PV MAI Schematic
Pulsed valve matrix assisted ionization schematic.

We have developed a new ionization approach for matrix-assisted ionization with high temporal resolution using an electrically actuated pulsed valve. Matrix and analyte samples are deposited on a thin metal foil and placed at the inlet of an ambient ionization mass spectrometer. When the pulsed valve is actuated, a short puff of high pressure gas impinges on the foil and ejects particulate from the sample on the opposite side. Highly charged ions are formed from the particles at the mass spectrometer inlet. Using this source, multiply charged protein ions are produced within a selectable 4 second time window.

High Resolution Laser Mass Spectrometry Bioimaging

K. K. Murray, , C. A. Seneviratne, and S. Ghorai, “High Resolution Laser Mass Spectrometry Bioimaging” Methods 104 (2016) 118–126; doi:10.1016/j.ymeth.2016.03.002

Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10 lm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics.

http://mass-spec.lsu.edu/documents/murray_2016.pdf

Laser Ablation Sample Transfer for Localized LC-MS/MS Proteomic Analysis of Tissue

F.Donnarumma and K. K. Murray, Laser ablation sample transfer for localized LC-MS/MS proteomic analysis of tissue, J Mass Spectrom, 2016 51 261-268.

Laser Ablation Sample Transfer for Localized LC-MS/MS Proteomic Analysis of Tissue. J. Mass Spectrom. 2016, 51, 261
Donnarumma, F.; Murray, K. K. Laser Ablation Sample Transfer for Localized LC-MS/MS Proteomic Analysis of Tissue. J. Mass Spectrom. 2016, 51, 261–268.

We have developed a mid-infrared laser ablation sampling technique for nano-flow liquid chromatography coupled with tandem mass spectrometry proteomic profiling of discrete regions from biological samples. Laser ablation performed in transmission geometry was used to transfer material from 50-μm thick tissue sections mounted on a glass microscope slide to a capturing solvent. Captured samples were processed using filter-aided sample preparation and enzymatically digested to produce tryptic peptides for data-dependent analysis with an ion trap mass spectrometer. Comparison with ultraviolet laser capture microdissec- tion from neighboring regions on the same tissue section revealed that infrared laser ablation transfer has higher reproducibility between samples from different consecutive sections. Both techniques allowed for proteomics investigation of different orga- nelles without the addition of surfactants.

GUMBOS matrices of variable hydrophobicity for matrix-assisted laser desorption/ionization mass spectrometry

Al Ghafly, Siraj, Das, Regmi, Magut, Galpothdeniya, Murray, Warner, Rapid Commun. Mass Spectrom. 2014, 28, 2307; DOI: 10.1002/rcm.7027.

RATIONALE

Detection of hydrophobic peptides remains a major obstacle for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). This stems from the fact that most matrices for MALDI are hydrophilic and therefore have low affinities for hydrophobic peptides. Herein, 1-aminopyrene (AP) and AP-derived group of uniform materials based on organic salts (GUMBOS) as novel matrices for MALDI-MS analyses of peptides were investigated for hydrophobic and hydrophilic peptides.

METHODS

A number of solid-phase AP-based GUMBOS are synthesized with variable hydrophobicity simply by changing the counterions. Structures were confirmed by use of 1H NMR and electrospray ionization mass spectrometry (ESI-MS). 1-Octanol/water partition coefficients (Ko/w) were used to measure the hydrophobicity of the matrices. A dried-droplet method was used for sample preparation. All spectra were obtained using a MALDI-TOF mass spectrometer in positive ion reflectron mode.

RESULTS

A series of AP-based GUMBOS was synthesized including [AP][chloride] ([AP][Cl]), [AP][ascorbate] ([AP][Asc]) and [AP][bis(trifluoromethane)sulfonimide] ([AP][NTf2]). The relative hydrophobicities of these compounds and α-cyano-4-hydroxycinnamic acid (CHCA, a common MALDI matrix) indicated that AP-based GUMBOS can be tuned to be much more hydrophobic than CHCA. A clear trend is observed between the signal intensities of hydrophobic peptides and hydrophobicity of the matrix.

CONCLUSIONS

MALDI matrices of GUMBOS with tunable hydrophobicities are easily obtained simply by varying the counterion. We have found that hydrophobic matrix materials are very effective for MALDI determination of hydrophobic peptides and, similarly, the more hydrophilic peptides displayed greater intensity in the more hydrophilic matrix.

Isolation and determination of the primary structure of a lectin protein from the serum of the american alligator (Alligator Mississippiensis)

doi:10.1016/j.cbpb.2011.11.001
Darville, Merchant, Maccha, Siddavarapu, Hasan, and Murray
Comp. Biochem Physiol. B

Alligator Lectin Protein Sequence (doi:10.1016/j.cbpb.2011.11.001)

Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35 kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35 kDa protein was ~ 98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates.